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1 Hypersimplices

A hypersimplex is a simplex that carries its defining relation explicitly following
the vertices, e.g. the blocks b1, b2 and b3 in Fig. 1 are combined by the relation
R to create the hypersimplex σ = 〈 b1, b2, b3 ; R 〉, where the “arch” σ exists
at a higher more aggregate level than its parts. To emphasise their relational
nature, hypersimplices may also be called relational hypersimplices.
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σ = 〈 b1, b2, b3; R 〉
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R

Figure 1: Parts combined into a whole by R forming a relational hypersimplex

Vertex Order in Relational Hypersimplices

In algebraic topology the vertex order in simplices is crucial. For example,
swapping a pair of vertices gives something different, 〈...vi...vj ...〉 6= 〈...vj ...vi...〉.
Vertex order is also necessary in relational hypersimplices, but it is not sufficient
to distinguish different structures formed from the same vertices.
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Figure 2: The relational simplices 〈a, c, t;Rcat〉 and 〈a, c, t;Ract〉

The words act and cat are formed by 3-ary relations on the letters a, c and
t. They can be discriminated by ordering the vertices appropriately, since 〈a,
c, t〉 6= 〈c, a, t〉. However, although vertex ordering can usefully discriminate
simplices such as 〈a, c, t〉 and 〈c, a, t〉, it is not sufficient to differentiate all
n-ary relational structure.
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For example, Fig. 3 shows the three objects ♦, ♥, and � related in twelve ways.
There are only six ways of ordering these objects as vertices, namely 〈♦,♥,�〉,
〈♦,�,♥〉, 〈♥,♦,�〉, 〈♥,�,♦〉, 〈�,♦,♥〉, and 〈�,♥,♦〉, and this is not enough to
distinguish the twelve different relationships that define the configurations.
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Figure 3: Twelve configurations of the elements {♦,♥,�}

To remove ambiguity it is necessary to make explicit the n-ary relation that
defines any particular structure. For example, c1 can be written as 〈♦,♥,�;R1〉
which can be discriminated from c7 = 〈♦,♥,�;R7〉 as shown below:

〈♦,♥,� ;R1〉 = �♥
♦ 6= �♥

♦ = 〈♦,♥,� ;R7〉

Hypernetwork theory extends conventional graphs, networks, hypergraphs
and simplicial complexes to make explicit the n-ary relations. Relational hyper-
simplices allow structures to be discriminated, even when they have the same
constituent parts, 〈v1, ..., vn;R〉 6= 〈v1, ..., vn;R′〉.

2 Examples

Example: The Knight Fork

Figure 4 shows three configurations of chess pieces. The configuration on the
left, 〈rook, knight, king; R1〉, is called a knight fork because the white knight
threatens the black rook as it puts the black king in check. Unless black has a
piece that can take it, the white knight can take the black rook because black
must move the king out of check. The configuration in the centre, (b) 〈rook,
knight, king; R2〉, is not a knight fork, even through the knight puts the king
in check. The configuration on the right is another knight fork, but it is clearly
different to that on the left. Thus, the same three pieces are assembled by three
different relations, R1, R2 and R3 to form three different structures.

(a) 〈rook, knight, king; R1〉
is a knight fork

(b) 〈rook, knight, king; R2〉
is not a knight fork

(c) 〈rook, knight, king; R3〉
is a knight fork

Figure 4: Knight fork structures in chess
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Example: Chemical Isomers

Chemical molecules are assemblies of atoms. For example propanol assembles
three carbon atoms with eight hydrogen atoms and an oxygen atom, written as
C3H8O or C3H7OH.
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(c) methyl-ethyl-ether

Figure 5: Chemical isomers as relational simplices

Figure 5 shows the atoms of propanol arranged in a variety of ways. The first
two show the isomers n-propyl alcohol and isopropyl alcohol. The oxygen atom
is attached to an end carbon in the first isomer and to the centre carbon in the
second, but the C-O-H hydroxyl group substructure is common to both. The
rightmost isomer of C3H8O, methoxyethane, has the oxygen atom connected to
two carbon atoms and there is no C-O-H substructure. This makes it an ether,
methyl-ethyl-ether, rather than an alcohol. Thus the hypersimplices of the iso-
mers have the same vertices, but the assembly relations are different. n-propyl
alcohol and isopropyl alcohol share the hydroxyl group substructure C-O-H and
are similar, but methyl-ethyl-ether does not and has different properties. Thus

〈 C, C, C, H, H, H, H, H, H, H, H, O ; R n−propylalcohol〉 6=
〈 C, C, C, H, H, H, H, H, H, H, H, O ; R isopropylalcohol〉 6=
〈 C, C, C, H, H, H, H, H, H, H, H, O ; Rmethyl−ethyl−ether〉

Example: The Perfect Gin and Tonic

Figure 6: The perfect gin and tonic, 〈gin, tonic, ice, lemon; Rperfect 〉

A ‘gin and tonic’ cocktail is made from gin, tonic, ice and a lemon. For me
the way to make a ‘perfect’ gin and tonic is the 4-ary relation, Rperfect , defined
as “Put the ice in a glass. Add a slice of lemon. Pour gin over the ice. Add
tonic, and stir.” This gives the hypersimplex 〈gin, tonic, ice, lemon; Rperfect 〉
as illustrated in Figure 6.
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Example: IQ Questions

Figure 7 is based on an a question in an IQ test. What is your answer?
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Figure 7: An IQ test question

To answer the question, one line of reasoning goes as follows: on the top row
the circle (second object) is inside the triangle (first object); on the second row
the square (first object) is inside the circle (second object); to follow the pattern
on the last row the second object (a triangle) should be inside the first object
(a square) and the answer is (B). Thus the structure behind this question is the
relational hypersimplex 〈x1, x2;R x2 is inside x1

〉. Although one might be tempted
to answer (A), this is not the right pattern because its relation is R x1 is inside x2

rather than the correct relation R x2 is inside x1
.

Another question in this IQ test asked, “A forest is to a tree as a tree
is to a ?”, giving the options orchard, plant, jungle and leaf. The relation
Rx2 is part of x1

applies to forest and tree, which suggests the answer is given by
relational hypersmplex simplex 〈 tree, leaf; Rx2 is part of x1

〉. If so the answer is
“leaf”.

Another question asked, “Car is to road as train is to”, giving the options
surface, locomotive, rails and wheels. Here the relational hypersimplex simplex
is 〈x1, x2;Rtravels on〉 and the likely answer is “rails”.
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Example: The Sun Illusion and Virtual Contours

Figure 8(a) shows the set of lines `1, ..., `16 arranged in a circle by the relation
R1. The resulting structure 〈`1, ..., `16;R1〉 has the emergent property that most
people see a clear white disk at the centre of the lines, the so-called sun illusion.
Figure 8(b) shows the same set of lines assembled under a different relation, R2.
Now there is no disk but a rectangle shape emerges. Figure 8(c) shows a twenty
eight lines assembled in such a way that a so-called virtual contour emerges.

`13
`14 `12

`15 `11

`16 `10

`1 `9

`2 `8

`3 `7

`4 `6
`5

��

@@

@@

��

��

XX

XX

��

�
�

C
C

C
C

�
�

(a) The sun illusion
σ1 = 〈`1, ..., `16;R1〉

(b) the rectangle illusion
σ2 = 〈`1, ..., `16;R2〉

(c) the virtual contour illusion
σ3 = 〈`1, ..., `28;R3〉

Figure 8: Emergent features in line assemblies

3 Hypernetworks

Any set of hypersimplices forms a hypernetwork. Like simplices, hypersimplices
have a geometric realisation as polyhedra. Hypernetworks have the same connec-
tivity properties as simplicial complexes, including the notions of q-connectivity,
eccentricity, and Galois pairs.
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Figure 9: Hypernetworks generalise all the common network structures

Figure 9 shows how the common relational structures form a unified whole.
On the top line, relations between pairs of things are given more structure.
Vertically there is generalisation from binary relations between pairs of things
to n-relations between any number of things. On the bottom line, hypergraphs
edges become simplices when the vertices are ordered, and simplices become
hypersimplices when n-ary relations are made explicit.

Hypernetworks do not compete with hypergraphs or networks – they natu-
rally generalise both. Hypernetworks, sets of hypersimplices, provide the last
piece in the relational jigsaw.
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