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1 From sets to simplices

Although hypergraphs provide a method of representing relationships between
more than two things they are not rich enough to make some basic distinctions,
e.g. in Fig. 1 the arches a1 and a2 are represented by the same set of blocks,
{x1, x2, x3}, but they are different structures.
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Figure 1: Limitations on the representational power of hypergraph edges

Let the rule for forming the arch be “(i) take a set of three blocks, (ii) take
an element from the set and put it on the left; (iii) take another element from
the set and put it on the right; (iv) take another element from the set and put
it on top of the others”. Selecting elements from a set is similar to pulling their
elements out of a bag with your eyes closed. As far as the set is concerned, all
the elements are equivalent, and the order in which they appear is not relevant.

Suppose one wanted the arch a1 and not a2. Then the elements have to be
selected in the right order. Let the construction be modified as “(i) order the
elements as x1, x2, and x3. (ii) take element x1 and put it on the left; (iii) take
x2 and put it on the right; (iv) take x3 and put on top of x1 and x2”. This gives
the arch a1 as desired. It is associated with an ordered set of vertices, which
can be written as 〈x1, x2, x3〉. This is different to 〈x2, x3, x1〉 which represents a2.

Simplices
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Figure 2: An n-dimensional simplex has n+ 1 vertices

Let V be a set whose element are called vertices. Any subset of V , {v0, v1, ..., vp}
determines an object called an abstract p-simplex, written σ = 〈v0, v1, ..., vp〉.
A p-simplex can be represented by a p-dimensional polyhedhron in (p + k)-
dimensional space, where k ≥ 0.
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Although they can be considered to be abstract objects determined by their
vertices, simplices have a geometric representation as polyhedra in multidimen-
sional space, e.g. a simplex with three vertices is a triangle in 2-dimensional
space and a simplex with four vertices is a tetrahedron in 3-dimensional space.
Let the notation |σ| mean the number of vertices of a simplex σ. The dimension
of simplex σ, dim(σ), is defined as the number of vertices of σ minus one (Figure
2), dim(σ) = |σ| − 1.

Examples of simplicies
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(a) three pairwise phone calls
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(b) a three-way phone call

Figure 3: Three pairwise phone calls 6= one three-way phone call

In Fig. 3(a) an unsuspecting father gets a phone call from his daughter via
the simplex 〈Daughter, Dad〉. “I’m in a shop and Mum said you would pay for
my new dress”, to which he replies: “OK, it will be a pleasure”. Then Mum gets
the message on the 〈Daughter, Mum〉 simplex that “Dad says he will pay for my
new dress”. Then he gets a call via the simplex 〈Mum, Dad〉 “Are you crazy!
Why didn’t you ask me first?” Poor Dad - if only there had been a three-way
phone call as shown in Fig. 3(b) then none of this would have happened.
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(b) English breakfast

Figure 4: Examples of simplices: the Full Monty

The phrase “The Full Monty” has come to mean “complete” or “‘the whole
thing”. It is said to come from the Montague Burton tailoring chain which
hired three-piece suits, 〈jacket, trousers, waistcoat〉, to men getting married.
(Fig. 4(a)). Another, less likely, explanation is that it comes from the full En-
glish breakfasts General Montgomery recommended for his troops 〈egg, bacon,
sausage, fried bread, baked beans, mushrooms, tomatoes, ketchup〉 ((Fig. 4(b)).
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Vertex parts and polyhedral wholes

In his book on Gestalt psychology [Katz, 1951] rejects the equation

Vanilla Ice Cream = Cold + Sweet + Vanilla Aroma + Softness + Yellow

which suggests that each attribute can be sensed separately and put together in
a linear way. In our terms, Vanilla Ice Cream is a polyhedron with five vertices
bound together by an indivisible 5-ary relation. This can be written as

Vanilla Ice Cream = 〈Cold, Sweet, Vanilla, Softness, Yellow 〉

6= 〈 Cold 〉 + 〈Sweet〉 + 〈Vanilla〉 + 〈 Softness〉 + 〈Yellow〉

with the “Gestalt” construct of Vanilla Ice Cream represented by a polyhedron
with five vertices. Figure 5 illustrates the distinction between an unrelated
set of vertices and the “Gestalt” polyhedron. It also illustrates the difference
between a polyhedron with five vertices embedded in a 4-dimensional space and a
network-theoretic clique embedded in 2-dimensional space in which every vertex
is connected to every other by a 1-dimensional link. The clique is the worst
representation, since ice-cream is experienced as a whole, not as combinations
of pairs of senses.

Vanilla Ice Cream = 〈Cold, Sweet, Vanilla, Softness, Yellow 〉 Polyhedron 6=

6= {〈Cold 〉, 〈Sweet〉, 〈Vanilla〉, 〈Soft〉, 〈Yellow〉} Set of Vertices

6= {〈Cold, Sweet 〉, 〈Cold, Vanilla〉, 〈Cold, Soft〉, 6=Set of Lines
〈Cold, Yellow〉, 〈Sweet, Vanilla〉, 〈Sweet, Soft〉,
〈Sweet, Yellow〉, 〈Vanilla, Soft〉, 〈Soft, Yellow〉,
〈Vanilla, Yellow〉}

The polyhedron 〈Cold, Sweet, Vanilla, Soft, Yellow〉 here expresses the concept
of whole which is clearly more than the sum of its parts:

〈Cold, Sweet, Vanilla, Soft, Yellow〉 6= 〈Cold〉+〈Sweet〉+〈Vanilla〉+〈Soft〉+〈Yellow〉
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(a) a set of vertices (b) a polyhedron (c) a clique

Figure 5: Set of vertices 6= polyhedron 6= clique
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〈bicycle〉 〈rider〉

t t
cyclist = 〈bicycle, rider〉

(a) Remove a vertex and the cyclist
simplex ceases to exist

(b) Remove a vertex and the perfect
gin and tonic ceases to exist
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Figure 6: Remove a vertex and the simplex ceases to exist.

The essential feature of a polyhedron is that it ceases to exist if any of the
vertices are removed. For example, consider a cyclist represented as the simplex
〈rider, bicycle〉. Remove either the man or the bicycle and what is left ceases to
be a cyclist. Removing a vertex is like sticking a pin in a balloon, causing the
structure to collapse and whatever is left is not the whole simplex. Remove any
vertex from 〈gin, tonic, ice, lemon〉 and it ceases to be the perfect gin and tonic.
Generalising edges to polyhedra allows a distinction to be made between the
parts of things represented by vertices, and wholes represented by polyhedra.

2 Simplices, polyhedra and their faces

Connectivity is a one of the most powerful concepts for analysing complex sys-
tems as illustrated by the widespread use of networks. The vertices of net-
works are 0-dimensional simplices, 〈v〉 and the edges are 1-dimensional sim-
plices, 〈v, v′〉. Two edges are “connected” if they share a vertex, and paths can
be defined as chains of connected edges.

Simplices allow a natural multidimensional generalisation of this well-established
concept of connectivity. For example, Figure 7 shows the four faces of a tetra-
hedron (3-simplex). This common use of the term “face” generalises. The
2-dimensional faces of a 3-dimensional tetrahedron are 2-dimensional triangles,
the 1-dimensional faces of a 2-dimensional triangle are its 1-dimensional edges,

(a) a solid 3-dimensional tetrahedron (b) the 2-dimensional faces of the tetrahedron

Figure 7: The 2-dimensional triangular faces of a 3-dimensional tetrahedron
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Figure 8: The faces of edges and triangles

and the the 0-dimensional faces of a 1-dimensional edge are its 0-dimensional
vertices (Fig. 8).

The simplex σ = 〈v′0, v′1, ..., v′q〉 is defined to be a q-dimensional face of the
simplex σ′ = 〈v0, v1, ..., vp〉 if {v′0, v′1, ..., v′q} ⊆ {v0, v1, ..., vp}. This is written as
σ . σ′. For example, σ = 〈v0, v2, v3〉 is a 2-dimensional triangular face of the
3-dimensional tetrahedron σ′ = 〈v0, v1, v2, v3〉.

3 The intersection of simplices

In networks, links and arrows are connected by vertices. For multidimen-
sional polyhedra, connectivities can have higher dimension than than the zero-
dimensions of a vertex. Two simplices are q-near if they share a q-dimensional
face. The intersection of two simplices σ and σ′ is defined to be their highest
dimensional shared face, σ′′. We write σ ∩ σ′ = σ′′.

In Fig. 9(a) the simplices share a vertex, which is a 0-dimensional face
so they are 0-near. In Fig. 9(b) the simplices share an edge, which is a 1-
dimensional face so they are 1-near. In Fig. 9(c) the simplices share a triangle,
which is a 2-dimensional face so they are 2-near.

(a) 0-near (b) 1-near (c) 2-near

Figure 9: q-near simplices
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4 Simplicial families and simplicial complexes

Any set of simplices is defined to be a simplicial family.

A set of simplices with all their faces forms a simplicial complex, i.e. a set
of simplices F is defined to be a simplicial complex if σ ∈ K implies σ′ ∈ K for
all σ′ . σ.

Every simplicial family determines a simplicial complex, namely the sim-
plices with all their faces.

Simplicial systems and bipartite relations
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R←→ B

a1

a2

a3

b1
b2
b3
b4
b5
b6

Figure 10: Simplicial families and bipartite relations

Let F be a simplicial family with simplices A and vertices B. Then a bipartite
relation can be defined between A and B with aR b if b is a vertex of a. This is
illustrated in Figure 10.

Alternatively, every bipartite relation A
R←→ B defines two simplicial fami-

lies. For each a in A let σ(a) be the simplex with vertex set {b |a R b} and for
each b in B let σ(b) be the simplex with vertex set {a | a R b}.

The conjugate families of A
R←→ B are

FA(B, R ) = {σ(a) | for all a ∈ A} and

FB(A, R ) = {σ(b) | for all b ∈ B}.

Let KA(B, R) = {σ |σ . σ(a) for all a ∈ A} be the simplices in FA(B, R) =
{σ(a) | for all a ∈ A} together with all their faces, and let KB(A, R) = {σ |σ .
σ(b) for all b ∈ B} be the simplices in FB(A, R) = {σ(b)| for all b ∈ B} with all
their faces.

The conjugate simplicial complexes of A
R←→ B are

KA(B, R ) = {σ |σ . σ(a) for any a ∈ A} and

KB(A, R ) = {σ |σ . σ(b) for any b ∈ B}.
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5 Multidimensional connectivity

(a) Pete and Sam as tetrahedra (b) Pete and Sam share a triangular face

Figure 11: People connected through their interests

Figure 11(a) shows two simplices representing the interests of two friends.
Pete’s tetrahedron (3-simplex) is σ(Pete) = 〈gaming, pubs, sport, cars〉 while
Sam’s simplex is σ(Sam) =〈pubs, sport, cars, fashion〉. These friends share the
triangular face 〈pubs, cars, sport〉 and are 2-near. Imagine them in a pub. Pete
tells Sam about his successful poker game last night. Sam listens politely, before
telling Pete about a new style of shoes in a magazine. Not interested in fashion,
Pete might mention the car driven by his favourite soccer star, sparking Sam’s
interest in both cars and sport and lead to a more intense discussion.

In Fig. 12 Sue has the simplex 〈fashion, history, painting, literature〉. She
shares just the vertex 〈fashion〉 with Sam, but has more in common with Jane,
being 1-near through the face 〈history, literature〉.

The set of connected simplices in Figure 12 is a structure that supports
different kinds of interaction. Whereas Pete and Sam can enjoy conversations
in pubs about fast cars and their favourite team, Sue and Jane are more likely
to have conversations combining history and literature such as the accuracy of
Shakespeare’s historical plays. In contrast Jane’s conversations with Tim are
likely to combine gardening with cooking, possibly discussing the seasonable
implications of herbs and vegetables for the dishes they like to make.

In this micro-society, Pete and Sam are the closest sharing three interests.
They form a relatively disconnected substructure from the rest, and they can

Figure 12: A simplicial family of people and their interests, FPeople(Interests)
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be imagined chatting easily at a party. Tim is also rather peripheral, being
connected only to Jane. In comparison, Sue and Jane are the most integrated,
each being connected to two other people. They seem to be the most central
people in this system.

The simplices σ and σ′ are defined to be q-connected in a simplicial family F
if there is a chain of simplices σ1, σ2, ..., σ` with σ = σ1, σ′ = σ`, and σi being at
least q-near σi+1 for i = 1, ..., `− 1. σ1, σ2, ..., σ` is called a chain of connection
between σ and σ′. The simplices σ and σ′ are said to be q-connected. By this
definition, if σ and σ′ are q-connected then they are p-connected for all p ≤ q.

Simplicial families and complexes extend the idea of connectivity in networks
to higher dimensions. For example, Pete is 2-near Sam, Sam is 0-near Sue, Sue
is 1-near Jane, Jane is 1-near Tim, so Sue is 1-connected to Tim through Jane:

2-near 0-near 1-near 1-near
σ(Pete) σ(Sam) σ(Sue) σ(Jane) σ(Tim)

Thus two simplices can be be q-connected, even though they have no vertices
in common. For example, Sue is 1-near Tim, even though σ(Sue)∩σ(Tim) = ∅.
Similarly, Pete and Tim are 0-connected, even though σ(Pete) ∩ σ(Tim) = ∅.

6 Q-analysis

In general, being q-connected is an equivalence relation on a set of simplices
and partitions them into q-connected components. A listing of the compo-
nents for each dimensional q-value is called a Q-analysis, e.g the Q-analysis
for FPeople(Interests) in Fig. 12 is

q = 3: {σ(Pete)}, {σ(Sam)}, {σ(Sue)}, {σ(Jane)}, {σ(Tim)}
q = 2: {σ(Pete), σ(Sam)}, {σ(Sue)}, {σ(Jane)}, {σ(Tim)}
q = 1: {σ(Pete), σ(Sam)}, {σ(Sue), σ(Jane), σ(Tim)}

q = 0: {σ(Pete), σ(Sam), σ(Sue), σ(Jane), σ(Tim)}

For a small system, Q-analysis can be presented as a skyscraper diagram as
shown in Fig. 13, as suggested in [Atkin, 1977].

Pete Sam Sue Jane Tim

Figure 13: A Q-analysis skyscraper diagram
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7 Structure Vectors

In a Q-analysis things cluster together through their shared vertices, and the
pattern of components gives an insight into the connectivity of a simplicial fam-
ily. The structure vector of a Q-analysis is a list of the number of components,
Qq at each dimension q. For example, the structure vector for the simplicial

family FPeople(Interests) in Fig. 12 is (
0
1,

1
2,

2
4,

3
5) where the dimension appears

above the number of components.
For large data sets listing the number of components is impractical and it

can be more useful to display the structure vectors as a graph. For example, the
Observatorium project at the University of Lisbon is storing online newspapers
from various countries. The web pages they are archiving have a lot of subtle
structure, and there are many hundreds of thousands of them going back a year
or more. As an experiment we analysed the Australian online newspaper articles
over a period of three days. These 104 web pages used 8816 words, and there
were 81,825 occurrences of these words in the 104 articles.

This structure vector illustrates a common feature in Q-analysis. At the
higher dimensions there are relatively few simplices. As q decreases the number
of simplices increases causing Qq to increase, but simplices begin to become
q-connected causing Qq to decrease. Initially Qq increases until it reaches a
maximum, here denoted max-Qq, and then decreases to Q0, which is usually 1.

In this context we define the q-percolation value, Pq of the complex to be
the highest value of q for which Pq = Q0, i.e. the largest value at which all
the simplices form one q-connected component when Q0 = 1, or the number of
disconnected components.

As shown in Fig. 14 in this case max-Qq = 57 at q = 221, while Pq =
110. Thus the 104 articles form a maximum of 57 components at q = 221 and
these all become connected at q = 110. Thus the percolation from maximum to
minimum number of components occurs relatively rapidly between q = 221 and
q = 110, which is about one sixth of the dimension range.

Figure 14: The structure vector for the article-word Q-analysis
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8 Eccentricity

σ(g1) = 〈ThinStem, Small, TulipShape, Narrow, Curved〉, ecc(σ(g1)|σ(g3)) = 0.20

σ(g2) = 〈ThinStem, Tall, CupShape, Wide, Curved, Logo〉, ecc(σ(g2)|σ(g3)) = 0.50

σ(g3) = 〈ThinStem, Tall, TulipShape, Narrow, Curved〉 , ecc(σ(g3)|σ(g1)) = 0.20

σ(g4) = 〈FatStem, Tall, VeeShape, Narrow, Straight〉, ecc(σ(g4)|σ(g5)) = 0.20

σ(g5) = 〈FatStem, Small, VeeShape, Narrow, Straight〉, ecc(σ(g5)|σ(g4)) = 0.20

σ(g6) = 〈ThinStem, Small, TubeShape, Narrow, Straight〉, ecc(σ(g6)|σ(g1)) = 0.40

Figure 15: A set of wine glasses, their descriptive simplices, and eccentricities

Some simplices are highly connected to other simplices while some simplices
are relatively disconnected. Those simplices that do not share many of their
vertices with other simplices are relatively eccentric. This is not always clear
from the Q-analysis. For example, Fig. 15 shows descriptive simplices for six
wine glasses.

Let F = {σ(g1), σ(g2), σ(g3), σ(g4), σ(g5), σ(g6)}. The Q-analysis is:

Q = 5: {σ(g2)}
Q = 4: {σ(g1)} {σ(g2)} {σ(g3)} {σ(g4)} {σ(g5)} {σ(g6)}
Q = 3: {σ(g1), σ(g3)} {σ(g2)} {σ(g4), σ(g5)} {σ(g6)}

Q = 2: {σ(g1), σ(g2), σ(g3), σ(g4), σ(g5)}, σ(g6)}

Let the difference between the simplices σ and σ′, σ minus σ′ written σ ` σ′,
be defined to be the simplex with

〈x〉 . σ ` σ′ if and only if 〈x〉 . σ and 〈x〉 6. σ′.

It follows that σ` σ′ = σ` (σ ∩σ′), so the difference between σ and σ′ is the
same as σ with the shared face removed.

Let the eccentricity of a simplex with respect to another be:

ecc (σ|σ′)
def
=
|σ ` σ′|
|σ|

=
number of σ vertices not shared with σ′

number of vertices of σ

Let the eccentricity of a simplex with respect to a family of simplices F be

ecc (σ|F )
def
= min{ ecc (σ|σ′)| σ′ belongs to F}

11



The Q-analysis of the glasses suggests that σ(g2) and σ(g6) are less integrated
in F than the other simplices. As Figs. 15 and 16 show, these have the highest
eccentricities (0.5 and 0.4 compared to 0.2 for the other simplices).

g6 g5 g4

g2
g3 g1

ecc(g1) = (5-4)/5 = 0.2

ecc(g2) = (6-3)/6 = 0.5

ecc(g3) = (5-4)/5 = 0.2

ecc(g4) = (5-4)/5 = 0.2

ecc(g5) = (5-4)/5 = 0.2

ecc(g6) = (5-3)/5 = 0.4

Figure 16: The skyscraper diagram and eccentricities for the glasses Q-analysis

Neither connectivity nor eccentricity are absolute concepts. Adding vertices
or simplices to a simplicial family can change either, e.g. adding 〈v0, v1, ...., vn〉
to the simplicial family with vertex set {v0, v1, ...., vn}. “swamps” all the other
simplices since they all become faces of this new simplex with eccentricity zero.

Similarly, adding vertices can change the structure, e.g. adding the vertex
〈Sherry Glass〉 increases the dimensions of σ(g1), σ(g5), and σ(g6) and changes
their connectivity and eccentricities. This illustrates that connectivity is sen-
sitive to the vertices used to represent the system, and using an inappropriate
vocabulary to describe a system can cause distortion.

9 Stars and hubs

σ1

σ2

σ3

σ4

σ6

σ5

σ1

σ2

σ3

σ4

σ6

σ5

(a) six 3-simplices with a common triangular face (b) the simplices in a star-hub configuration

Figure 17: A star-hub configuration

Figure 17(a) shows six 3-simplices as tetrahedra sharing a common triangular
face. Figure 17(b) shows these simplices brought together into what will be
called a star-hub configuration.
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Let F be a simplicial family. The hub of F is defined as

hub (F )
def
= ∩σ∈F σ

When the hub is non-empty, hub(F ) 6= ∅, F is said to be the star of hub(F ).
Given a face 〈v0, ..., vp〉 of any simplex in F , its star is defined as

star 〈v0, ..., vp〉
def
= {σ ∈ F | 〈v0, ..., vp〉 . σ}

These definitions allow F to be any simplicial family. Suppose F is a subfamily
of a simplicial family F and that hub(F ) = 〈v0, ..., vp〉. Then it is possible that
there exists a simplex σ in F with 〈v0, ..., vp〉 as a face, but σ does not belong
to F . Thus in general

F ⊆ star(hub(F ))
and for some F

F ⊂ star(hub(F )).

For example, in Fig. 17, let F = {σ1, σ2, σ3, σ4, σ5, σ6} and let F = {σ1, σ2, σ3}.
Then hub(F ) is the shaded triangle, but star((hub(F )) also includes the simplices
σ1, σ2, and σ3 so that

F = {σ1, σ2, σ3} ⊂ {σ1, σ2, σ3, σ4, σ5, σ6} = star((hub (F ))

When star(hub(F )) = F the family F will be called a maximal star.

Let 〈v0, ..., vp〉 be any face of a simplex in family F . Then, by definition,
star(〈v0, ..., vp〉) = {σ | 〈v0, ..., vp〉 . σ}. It is possible that hub( {σ | 〈v0, ..., vp〉 .
σ}) is “larger” than 〈v0, ..., vp〉.
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Figure 18: 〈v1, v2〉 . hub(star〈v1, v2〉) = 〈v1, v2, v3〉

In Figure 18 the star of the 1-simplex 〈v1, v2〉 is {σ1, σ2, σ3}. But the intersection
of these simplices is the triangular face 〈v1, v2, v3〉. Thus in general

〈v0, v1, ..., vp〉 ⊂ hub(star〈v0, v1, ..., vp〉)

When 〈v0, v1, ..., vp〉 = hub(star〈v0, v1, ..., vp〉), the simplex 〈v0, v1, ..., vp〉 is said
to be a maximal hub.
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10 Q-graphs

Let the q-graph of a simplicial family have a vertex representing each simplex
and an edge with weight p between σ and σ′ if they are p-near, p ≥ q.

The simplicial families, F1 = {σ5,1, σ5,2, σ5,3} and F2 = {σ5,4, σ5,5, σ5,6} in
Figure 19 each have three 5-dimensional simplices. The simplices of F1 are all

pairwise 2-near sharing the triangles σ2,1
def
= σ5,1 ∩ σ5,2, σ2,2

def
= σ5,2 ∩ σ5,3, and

σ2,3
def
= σ5,3 ∩ σ5,1.

The simplices of F2 are also pairwise 2-near sharing the triangles σ2,4
def
=

σ5,4 ∩ σ5,5, σ2,5
def
= σ5,5 ∩ σ5,6, and σ2,6

def
= σ5,6 ∩ σ5,4. However, they are also

three-wise 2-near since σ2,4 = σ2,5 = σ2,6.

σ5,1

σ5,2

σ5,3

σ2,1

σ2,2

σ2,3

hole

(a) F1 = {σ5,1, σ5,2, σ5,3} (b) F2 = {σ5,4, σ5,5, σ5,6}

σ5,4

σ5,5

σ5,6

σ2,4













J
J
J
J
JJ

s

s

s

σ5,1

σ5,2 σ5,3

q = 2 q = 2

q = 2

(c) the 2-graph of F1













J
J
J
J
JJ

s

s

s

σ5,4

σ5,5 σ5,6

q = 2 q = 2

q = 2

(d) the 2-graph of F2

q = 5,4,3 {σ1}, {σ2}, {σ3}
q = 2,1,0 {σ1, σ2, σ3}

(e) Q-analysis of F1

q = 5,4,3 {σ3}, {σ4}, {σ5}
q = 2,1,0 {σ3, σ4, σ5}

(f) Q-analysis of F2

Figure 19: Q-graphs cannot discriminate different topologies

Let two q-graphs G and G′ be equivalent if there is a bijection φ between
their vertices such that 〈v1, v2〉 ∈ G if and only if 〈φ(v1), φ(v2)〉 ∈ G′.

The q-graphs of F1 and F2 are equivalent , e.g. let φ(σ5,1) = σ5,4, φ(σ5,2) =
σ5,5, and let φ(σ5,3) = σ5,6. Also Figs. 19(e) and (f) show that the Q-analysis
of F1 is the same as that of F2. However, these simplicial families have different
topologies because the simplices of F1 form a configuration with a “hole” while
those of F2 are all connected by the same triangular face, σ2,4. This common
face acts as a hub of the star-like configuration.
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11 From the q-graph to the q-complex

The ambiguity in the q-graph between holes and hubs in q-graphs is easy to
rectify by defining the q-complex of a simplical family F to be the simplicial
complex with simplices 〈σ1, σ2, ...〉 where |σ1 ∩ σ2...| ≥ q. This augments the
edges of q-graphs which denote two simplices being q-near by simplices which
denote that sets of simplices have a common p-dimensional face, p ≥ q. This
solves the problem of ambiguity in the q-graph.

(a) K has a 1-hub and a 1−hole (b) the q-complex of K extends the q-graph

︸ ︷︷ ︸
〈σ1, σ2, σ3〉

corresponds to the 1-hub

︷ ︸︸ ︷
the cycle corresponds

to the 1-hole
︷ ︸︸ ︷1-dimensional q-hole [σ4, σ5, σ6, σ7, σ8, σ9, σ4]

1-dimensional

hub σ1 ∩ σ2 ∩ σ3

     
σ1

�
�

�
��

�

�
�
� XXX
X
σ3

@
@
@
@

H
HHH

��
���

hhhhh

�
�
��σ2
σ4

σ6 σ7

σ9

σ8

σ5

σ1
σ2

σ3

σ4

AA
σ9

��

σ5

σ8

σ6

AA

��

σ7

K

Figure 20: The q-complex disambiguates hubs and holes

On the left of Fig. 20(a) are three tetrahedra σ1, σ2 and σ3 where |σ1∩σ2∩
σ3| = 1, i.e. these simplices have a 1-dimensional hub. This is represented by
a solid triangle in the q-complex (Fig. 20(b)). Let a 1-dimensional cycle in the
q-complex be defined to be a a q-loop, e.g. σ4 − σ5 − σ6 − σ7 − σ8 − σ9 − σ4

in Figure 20(b). These are related to Atkin’s notion of ‘pseudo-homotopy’,
or shomotopy, which identifies ‘q-holes’ and distinguishes them from ‘0-holes’,
corresponding to the intuitive notion of ‘hole’. Furthermore, a “homological”
always has associated 0-loops (Fig. 21).
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(a) (b)

Figure 21: Homological holes are always cycles in the q-complex
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12 Galois Families

Let F be a family of simplices, {σ(a1), σ(a2), ..., σ(am)} with vertices B =
{b1, b2, ..., bn}. Let A = {a1, a2, ..., am}. Then there is a bipartite relation
R between A and B defined as aR b if 〈b〉 . σ(a) for a in A and b in B. By an
abuse of notation we will write b R a if a R b. Let A′ be any subset of A. Then

R(A′)
def
= ∩a∈A′ σ(a)

def
= σ(A′)

def
= hub(A′),

and
R2(A′)

def
= star(hub(A′)), where A′ ⊆ R2(A′).

Similarly

R(B′)
def
= {σ(a) |B′ . σ(a)} def

= star(B′).
and

R2(b′)
def
= hub(star(B′)) where B′ ⊆ R2(B′).

The following hold:

For all A′ ⊆ A, R2(A′) is a maxmal star.

For all B′ . σ(a) for any a in A, R2(B′) is a maximal hub.

The maximal stars R2(A′) and maximal hubs R2(B′) are in 1-1 correspon-
dence.

The 1-1 correspondence is R2(A′)↔ R(A′) or, equivalently, R(B′)↔ R2(B′) is
a Galois connection and R2(A′) ↔ R(A′) and R(B′) ↔ R(B′) are called star-
hub Galois pairs. The animal-characteristics relation in Fig. 22 has the Galois
pair

〈brown, vegetarian, quadruped〉 ←→ 〈deer, hare, mouse, camel〉.

←→

〈tiny〉

〈hump〉

〈small〉

〈antlers〉

〈vegetarian〉

〈quadruped〉

〈brown〉

〈tiger〉

〈hare〉
〈falcon〉

〈chimpanzee〉

〈camel〉〈deer〉

〈mouse〉

σ(mouse) σ(hare)

σ(deer)σ(camel)

σ(quadruped)

σ(brown)

σ(vegetarian)

Figure 22: The Galois pair 〈brown, vegetarian, quadruped〉 ←→ 〈deer, hare,
mouse, camel〉.
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13 Galois prisms

←→

〈tiny〉

〈hump〉

〈small〉

〈antlers〉

〈vegetarian〉

〈quadruped〉

〈brown〉

〈tiger〉

〈hare〉
〈falcon〉

〈chimpanzee〉

〈camel〉〈deer〉

〈mouse〉

σ(mouse) σ(hare)

σ(deer)σ(camel)

σ(quadruped)

σ(brown)

σ(vegetarian)

(a) Dual star-hub pairs

(b) hub({hare, deer, camel, mouse}) � hub{vegetarian, quadruped, brown}
= 〈vegetarian, quadruped, brown, hare, deer, camel, mouse〉

〈vegetarian〉

〈quadruped〉

〈brown〉
�
�
��

〈hare〉
@
@
@@

〈camel〉

〈deer〉

�
�

〈mouse〉

Figure 23: The Galois prism formed from the hubs of dual stars

The prism between σ and σ′, written σ � σ′, is defined to be the simplex
with the property that 〈x〉 . σ � σ′ if and only if 〈x〉 . σ or 〈x〉 . σ′ or
both. The Galois prism of a Galois pair σ ↔ σ′ is defined to be their prism, σ�σ′.

Figure 23(a) shows the star-hub pairs associated with the Galois pair

〈hare, deer, camel, mouse〉 ↔ 〈vegetarian, quadruped, brown, hare, deer, camel, mouse〉.

and Figure 23(b) shows the Galois prism

〈 hare, deer, camel, mouse ; vegetarian, quadruped, brown, hare, deer, camel, mouse〉.
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14 Example: Sky and Water

21

22 20 23

24 18 25 19 26

27 15 28 16 29 17 30

11 31 12 32 13 33 14

7
34

8 35 9 36 10

4 37 5 38 6

2 39 3

1

(a) Escher’s Sky and Water (b) fish and bird shapes

Figure 24: The shapes and features abstracted from Escher’s Sky and Water

Figure 24(a) shows Escher’s picture Sky and Water in which the birds at the
top of the picture seems to change into fish at the bottom. Figure 24(b) shows
the various shapes that appear in the picture. The table below shows a relation
between the shapes and a set of twelve descriptors.

1 2 3 4 5 6 8 9 10 11 12 13 7 21 22 23 24 25 26 28 29 27 31 32 33 30 34 35 36 37 38 14 15 16 17 18 19 20 39Shapes:

scales 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
mouth 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

gills 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

fish-tail 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
fins 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

fish-shape 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

eye 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
duck-shape 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0

two-wings 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

feathers 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
beak 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

legs 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.........................................................................................................

.........................................................................................................

...

...

...

...

...

...

...

...

...

...

...

...

...

.

.....................................................................................................

........................................................................................................
...
...
...
...
...
...
...
...
...

Table 4.7 The relation between descriptors and shapes for Escher’s Sky and Water

Inspection of the incidence matrix in Table 4.7 reveals a number of maximal
rectangles corresponding to star-hub Galois pairs, including:

〈1, 2, 3, 4, 5, 6〉 ←→ 〈scales, mouth, gills, fish-tails, fins, fish-shape, eye〉
〈1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13〉 ←→ 〈fish-tails, fins, fish-shape, eye〉
〈21, 22, 23, 24, 25, 26, 28, 29〉 ←→ 〈eye, duck-shape, two-wings, feathers, beak, legs〉
〈21, 22, 23, 24, 25, 26, 28, 29, 27, 31, 32, 33〉 ←→ 〈eye, duck-shape, two-wings〉
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34 38 37 36 35
30

31 33 32
27 28

29 26 25 24 23 22 21

19 18 17 16
14

13 12 11 7
10 9 8

6 5 4 3 2 1

︷ ︸︸ ︷ ︷ ︸︸ ︷bird shapes fish shapes

(a) Skyscraper diagram for the Q-analysis of FShapes(Descriptors).

legs
beak

feathers

two-wings

duck-shape

eye

fins

fish-shape

fish-tail
gills mouth

scales

(b) Skyscraper diagram for the Q-analysis of FDescriptors(Scales).

Figure 25: The skyscraper diagrams for the shapes – features Q-analyses

Of course there are many more Galois pairs than this, e.g.

〈1, 2, 3, 4, 5, 6, 8, 9, 10〉 ←→ 〈mouth, gills, fish-tails, fins, fish-shape, eye〉
〈21, 22, 23, 24, 25, 26, 28, 29, 27〉 ←→ 〈eye, duck-shape, two-wings, feathers, beak〉

Some of the columns of the incidence matrix have been swapped to make
the maximal rectangles more obvious. Even so there are other Galois pairs not
forming maximal rectangles in this version, for example

〈1, 2, 3, 4, 5, 6, 8, 8, 10, 7〉 ←→ 〈mouth, gills, fins, eye〉

Figure 25(a) shows the skyscraper diagram for the Q-analysis of the shape-
descriptor family. As can be seen, the shapes fall into two major components
corresponding to bird shapes and the fish shapes. Figure 25(b) shows the congu-
gate Q-analysis with σ(eye) having the largest dimension (q = 24) followed by
σ(duck-shape) and σ(fish-shape) at q = 16.

Removing the “eye” descriptor creates two disconnected subfamilies, one
with fish shapes and the other with duck shapes. Thus the transition from
ducks at the top of Escher’s picture to the fish at the bottom does not involve
morphing from one shape to the other. Instead the picture is tiled by shapes,
half of which get more duck-like towards the top and half of which get more
fish-like towards the bottom.
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14.1 Example: The Wisdom of Crowds

Groups of people often collectively give reliable answers to questions, even when
some are uncertain. To investigate this, consider a mathematics test given to
forty five students {s1, s2, ..., s45}. Each member qj of the set of questions,
{q1, q2, ..., q20}, had seven possible answers denoted Aj, Bj Cj, Dj, Ej, Fj and
Gj in Table 4.10.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

s1 C1 B2 A3 G4 C5 E6 C7 D8 E9 A10 F11 C12 B13 D14 F15 D16 G17 C18 C19 F20
s2 C1 D2 A3 G4 C5 E6 C7 D8 E9 A10 F11 C12 B13 D14 C15 D16 G17 D18 C19 F20
s3 C1 B2 A3 G4 C5 F6 C7 C8 E9 A10 F11 C12 B13 D14 F15 D16 G17 D18 C19 F20
s4 C1 B2 A3 G4 C5 E6 C7 D8 E9 A10 F11 C12 B13 D14 F15 D16 G17 D18 C19 F20
s5 C1 D2 A3 G4 C5 F6 C7 C8 E9 C10 F11 C12 B13 D14 B15 B16 G17 D18 E19 G20
s6 C1 B2 A3 G4 C5 F6 C7 D8 E9 A10 F11 C12 B13 D14 A15 D16 G17 D18 C19 F20
s7 C1 D2 A3 C4 C5 F6 C7 D8 D9 A10 E11 C12 G13 B14 F15 D16 G17 D18 B19 F20
s8 C1 B2 A3 G4 C5 E6 C7 D8 E9 A10 F11 C12 B13 C14 F15 D16 G17 C18 C19 F20
s9 C1 D2 A3 A4 C5 F6 C7 B8 G9 G10 F11 C12 B13 B14 E15 D16 G17 D18 C19 F20
s10 C1 D2 A3 G4 C5 E6 C7 C8 D9 A10 F11 C12 B13 D14 F15 D16 G17 D18 D19 F20
s11 C1 B2 A3 D4 C5 F6 C7 D8 E9 A10 F11 C12 B13 D14 E15 D16 G17 D18 C19 F20
s12 C1 B2 A3 B4 C5 F6 A7 A8 F9 F10 A11 E12 G13 C14 E15 A16 C17 D18 B19 A20
s13 C1 B2 A3 G4 C5 F6 C7 D8 E9 A10 F11 C12 B13 D14 F15 D16 G17 D18 C19 F20
s14 C1 D2 A3 E4 C5 F6 C7 C8 E9 A10 F11 C12 G13 D14 F15 B16 G17 B18 A19 F20
s15 C1 B2 A3 G4 C5 F6 C7 D8 F9 C10 F11 C12 G13 D14 F15 D16 G17 D18 C19 F20
s16 C1 B2 A3 G4 C5 E6 C7 D8 E9 A10 F11 C12 B13 D14 F15 D16 G17 D18 C19 F20
s17 C1 B2 A3 A4 C5 F6 C7 D8 E9 C10 F11 B12 B13 C14 E15 D16 G17 D18 C19 F20
s18 C1 D2 A3 G4 C5 F6 C7 D8 E9 A10 F11 C12 B13 C14 E15 D16 G17 E18 F19 D20
s19 C1 B2 A3 G4 C5 E6 C7 D8 E9 A10 F11 C12 B13 D14 F15 D16 G17 D18 C19 F20
s20 C1 B2 A3 G4 C5 F6 C7 A8 E9 A10 F11 C12 B13 D14 F15 F16 G17 D18 C19 F20
s21 C1 B2 A3 G4 C5 E6 C7 D8 E9 C10 B11 C12 B13 C14 F15 D16 G17 B18 C19 G20
s22 C1 D2 A3 G4 C5 F6 D7 D8 E9 G10 F11 C12 B13 C14 F15 A16 G17 A18 C19 F20
s23 C1 D2 A3 C4 C5 E6 C7 D8 E9 A10 F11 C12 B13 D14 F15 D16 G17 A18 C19 F20
s24 C1 B2 A3 G4 C5 F6 C7 B8 E9 A10 F11 C12 B13 D14 E15 B16 G17 C18 C19 F20
s25 C1 B2 A3 G4 C5 E6 C7 D8 E9 A10 F11 C12 B13 D14 F15 D16 G17 D18 G19 F20
s26 C1 D2 A3 B4 C5 F6 C7 B8 F9 G10 D11 C12 G13 G14 B15 B16 E17 C18 B19 F20
s27 C1 B2 A3 G4 C5 E6 C7 C8 E9 A10 F11 C12 B13 D14 F15 D16 G17 D18 E19 F20
s28 B1 B2 A3 G4 C5 F6 D7 D8 D9 A10 F11 C12 G13 D14 F15 D16 G17 D18 C19 E20
s29 C1 B2 A3 G4 C5 E6 C7 D8 E9 A10 F11 C12 B13 D14 E15 D16 G17 D18 B19 F20
s30 C1 B2 A3 G4 C5 F6 C7 D8 E9 A10 F11 C12 B13 A14 E15 B16 G17 D18 C19 F20
s31 C1 B2 A3 G4 C5 E6 C7 C8 E9 A10 F11 C12 B13 C14 E15 D16 G17 D18 D19 F20
s32 C1 B2 A3 G4 C5 E6 C7 D8 E9 A10 F11 C12 B13 D14 F15 D16 G17 D18 C19 F20
s33 C1 B2 A3 G4 C5 E6 X7 B8 D9 A10 A11 C12 E13 D14 E15 B16 G17 D18 C19 F20
s34 C1 B2 A3 G4 C5 E6 C7 C8 E9 A10 F11 C12 B13 C14 F15 D16 G17 D18 C19 F20
s35 C1 B2 A3 G4 C5 F6 C7 D8 E9 B10 F11 C12 B13 D14 F15 A16 G17 D18 B19 F20
s36 C1 B2 A3 B4 C5 E6 C7 D8 E9 A10 F11 C12 B13 D14 F15 D16 G17 D18 C19 F20
s37 C1 D2 A3 G4 C5 E6 A7 A8 E9 A10 B11 C12 B13 B14 E15 D16 G17 C18 D19 F20
s38 C1 D2 A3 D4 C5 F6 C7 F8 E9 B10 B11 A12 D13 G14 B15 B16 G17 C18 C19 A20
s39 C1 B2 A3 G4 C5 F6 C7 D8 E9 A10 F11 C12 B13 D14 G15 D16 G17 D18 E19 G20
s40 C1 B2 A3 G4 C5 F6 C7 E8 E9 A10 F11 C12 B13 B14 F15 B16 G17 D18 B19 A20
s41 C1 D2 A3 D4 C5 F6 C7 B8 D9 C10 X11 A12 G13 D14 E15 A16 G17 D18 C19 A20
s42 C1 B2 A3 G4 C5 E6 C7 D8 E9 A10 F11 C12 B13 D14 F15 D16 G17 D18 C19 F20
s43 C1 B2 A3 G4 C5 E6 C7 D8 E9 A10 F11 C12 B13 D14 F15 D16 G17 D18 C19 F20
s44 C1 B2 A3 G4 C5 F6 C7 A8 E9 A10 F11 C12 B13 D14 E15 B16 D17 C18 C19 F20
s45 D1 B2 A3 G4 C5 E6 C7 B8 E9 A10 F11 C12 G13 D14 F15 D16 G17 D18 C19 F20

Table 4.10. The relation between students and their answers

Can the correct answers be abstracted from this table with no further infor-
mation? To test this the relation R is defined between the students and their
answers. Student si is R-related to answer aj if this is the answer they give to
qj . For example, student s1 is R-related to C1, B2, A3, G4, and so on.
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Answer Students Answer Students Answer Students Answer Students
q1 - C1 43 q6 - F6 24 q11 - F11 37 q16 - D16 31
q2 - B2 32 q7 - C7 40 q12 - C12 41 q17 - G17 42
q3 - A3 45 q8 - D8 26 q13 - B13 35 q18 - D18 33
q4 - G4 34 q9 - E9 36 q14 - D14 30 q19 - C19 30
q5 - C5 45 q10 - A10 34 q15 - F15 26 q20 - F20 36

Table 4.11. The most popular answers selected by the 45 students.

For each question the most frequently given answers are shown in Table
4.11. The first column shows that all students except two gave the answer C1 to
question q1, making it highly likely that this is the correct answer. In general
one would expect the majority response to be correct.

At first sight the answers in Table 4.11 are correct, since in all cases more
than half the students gave these responses. For most of the questions the
students overwhelmingly agree, but for some the agreement is not so clear. For
example, for question q6 the answer F6 was selected by 24 students (53%). The
answer D8 to questions q8 was given by 26 students (58%), and the answer F15

to question q15 was also selected by 26 students (58%). How certain can one be
that the most popular answers are really correct in these cases?

Of particular interest is 21 students answering E6 (47%) to q6 , compared to
24 (53%) for F6. Is the majority correct? To answer this question, consider the
students viewed as relational simplices, e.g. σ(s1) = 〈C1, B2, A3, G4, C5, E6,

C7, D8, E9, A10, F11, C12, B13, D14, F15, D16, G17, C18, C19, F20〉. HS(Q;R)
is the family of the relational simplices σ(s1), ..., σ(s45).

The Q-analysis of the hypernetwork HS(Q,R) in Fig. 26 shows the compo-
nent {s42, s16, s43, s4, s32, s19} at q = 19, meaning that each of these students
gave exactly the same answers to all twenty questions, i.e. the simplex σ = 〈C1,
B2, A3, G4, C5, E6, C7, D8, E9, A10, F11, C12, B13, D14, F15, D16, G17, D18, C19,
F20〉. Its vertices are exactly the same as the list of most frequently occurring
answers given in Table 4.11, with the exception of E6, instead of F6. Have these
six students answered all the questions correctly with the exception of q

6
?

12 26 38 41 7 9 14 18 37 22 23 5 40 28 17 21 35 10 45 39 44 24 23 15 30 20 2 34 31 29 11 27 13 25 36 3 6 8 42 16 43 4 32 19 1

Figure 26: Q-analysis of the student-questions relation, HS(Q,R) showing con-
nected students
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12 26 41 38 7 9 37 14 18 22 33 5 40 28 45 17 21 2 39 23 24 44 30 35 10 15 36 31 29 11 27 20 25 34 6 13 3 8 1

Figure 27: Q-analysis of HS(Q,R) with students s42, s16, s43, s4, s32 and s19

removed

In this system, if more than two students get all the answers right then they
will have identical answer simplices. This is the first indication that E6 is correct
rather than the more popular answer F6. Since there is only one non-trivial 19-
component, all the other students have at least one vertex different to any other,
which means that if F6 is correct only one student, s13, got all the answers right.

Consider the weaker students in this cohort. They will get a number of the
answers wrong, not only missing the correct answer but also giving a scattering
of incorrect answers, and they will tend to be more eccentric in the answers
they give. In other words, one expects the better students to be more highly
connected and the weaker students to be less highly connected.

To investigate the lower level connectivities, students s4, s16, s19, s32, s42, and
s43 were removed from the system, and the Q-analysis rerun (Figure 27).

At q = 18 there are three components, {s24, s44}, {s6, s13, s3} and {s8, s1}.
Of these students, s24, s44, s6, s13, and s3 gave the answer F6 while s8 and s1

gave the answer E6. Thus, five of the most highly connected students favoured
F6 while, including the six removed for this analysis, eight favoured E6 (62%).

A larger component emerges at q = 17, with students s1, s3, s6, s8, s11,
s13, s20, s25, s27, s29, s31, s34, and s36. Eight of these students favour E6 while
five favour F6. Combined with the previous six, this means that 14 of the most
highly connected students favour E6 (74%) while 5 favour F6.

What about the most disconnected students at the left of Fig. 27? Exami-
nation of Table 4.10 shows that s12, s26, s41, s38 and s7 all gave the answer F6.
Assuming these are the weakest students, this is another strong indication that
F6 is wrong. This is a strong indication that E6 is the correct answer to q

6
.

Thus, although F6 is the most popular answer for q6, the most highly con-
nected students overwhelmingly prefer E6. Assuming that the most highly con-
nected students will be the best, this is a very strong indication that E6 is the
correct answer.

Having reached this conclusion without any information about the questions
or answers other than that given in Table 4.10, the conclusion can be tested
by reference to the examination paper. Question 6 reads as follows: “A body
moves in such a way that its speed (in miles per hour) after t hours is 4t3.
How far has it travelled after 3 hours?” It gives the options (A6)16 miles, (B6)
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27 miles, (C6)54 miles, (D6) 64 miles, (E6) 81 miles, (F6) 108 miles, and (G6)
243 miles. The stronger students correctly realised that they had to integrate
4t3 and substitute 3 into t4 to give 81 miles (E6), while the weaker student
incorrectly substituted 3 directly into 4t3 to obtain 108 miles (F6).

This example shows how multidimensional connectivity can be used to reason
about systems. It also illustrates that the “wisdom of crowds” may be more
subtle than majority decision making, and that the way individuals cluster
together through their connectivity can be significant.

References

[Atkin, 1977] . Atkin, R. H., Combinatorial Connectivities in Social Systems,
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