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1 Hypergraphs

A hypergraph is a set of vertices, V , and a set of subsets of V , E called hypergraph
edges. In general the members of E can have more than two elements.
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Figure 1: The Berge hypergraph

The hypergraph shown in Figure 1 is taken from the book Hypergraphs by
Claude Berge [Berge, 1989]. The vertices are V = {x1, x2, x3, x4, x5, x6, x7, x8}
and there are six edges E = {E1, E2, E3, E4, E5, E6}. The relation, R, between
the edges and vertices is given in Figure 1(b). The edges are E1 = {x3, x4, x5},
E2 = {x5, x8}, E3 = {x6, x7, x8}, E4 = {x2, x3, x7}, E5 = {x1, x2} and E6 =

{x7}. The set HE
def
= {E1, E2, E3, E4, E5, E6} will be called a hypergraph.

In Figure 1(a)) the conventional vertex and edge representation of graphs
for the loop E6 = {x7, x7} and lines E2 = {x5, x8} and E5 = {x1, x2} is mixed
with the Euler circle method of representing sets used for E1, E3, and E4. It
would be more consistent to draw the singleton and two-element sets as Euler
circles as shown in Figure 2, and this is how hypergraphs will be drawn here.
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Figure 2: The Berge hypergraph drawn in Euler set form
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Figure 3: The Dual Berge hypergraphs

Every hypergraph has a dual hypergraph as illustrated in Figure 3(b) for
the Berge hypergraph. Here the “edges” are sets of edges associated with the
vertices, e.g. x2 is associated with the dual edge {E4, E5}.

Let R be a relation between A and B. Let the notation a R b mean that a
is R-related to b. Let R(a) = {b | for all b in B with aR b} and R(b) = {a | for
all a in A with aR b}. In general a relation R between sets A and B has two
associated hypergraphs, HA(B;R) and HB(A;R), defined as follows:

HA(B;R)
def
= {R(a) | a in A),

HB(A;R)
def
= {R(b) | b in B).

As an example let A = {London Bus, London Taxi, Postbox} and B = {red,
black, big, small, wheels, slot, metal}. The relation R and the hypergraph
HA(B;R) are shown in Figure 4. The dual hypergraph is HB(A;R) with mem-
bers R(big) = {London Bus}, R(black) = {London Taxi}, R(slot) = {London Post-

box}, R(wheels) = {London Bus, London Taxi}, R(red) = {London Bus, London

Postbox}, R(small) = {London Taxi, London Postbox}, and R(metal) = {London
Bus, London Taxi, London Postbox}.

HA(B;R)

R(London Bus) = {big, red, metal, wheels}
R(London Taxi) = {small, black, metal, wheels}
R(Postbox) = {small, red, metal, slot}

London Postbox

London
Bus

London
Taxi

big
wheels

black

small

slot

red

metal

Figure 4: The Hypergraph HA(B;R)
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2 The Hypergraphs of a Bipartite Network

A relation R between sets A and B has an associated network with vertices
A ∪ B and edges (a, b) where aR b. Bipartite relations with A ∩ B = ∅ have a
much richer connectivity structure than might appear at first sight. As before
let R(a) = { b | b ∈ B with aR b}, e.g. R(a) = {b1, b2, b3, b4} in Figure 5(a).
Then

HA(B;R) = {R(a1), R(a2), R(a3)}
= { {b1, b2, b3}, {b2, b3, b4, b5, b6}, {b5, b6, b7, b8} }

HB(A;R) = {R(b1), R(b2), R(b3), R(b4), R(b5), R(b6), R(b7), R(b8)}
= { {a1}, {a1, a2}, {a2}, {a2, a3}, {a3}, }

are the hypergraph edges of R in Figure 5(b). The sets R(a) and R(b) are
called hyperedges. The number of vertices in a hyperedge R(a) is called its
extent, written |R(a)|.

(a) the hyper-edge R(a) (b) connected hyper-edges

Figure 5: Connected hyperedges in a bipartite network

Let the hyperedge R(a) be a neighbour of the hyperedge R(a′) if their inter-
section is non-empty, R(a) ∩ R(a′) 6= ∅. R(a) is an h-neighbour of R(a′) if
|R(a) ∩R(a′)| ≥ h.

Hyperedges R(a) and R(a′) are said to be h-connected under R if there exists a
sequence a1, a2, ..., a` with a = a1, a′ = a`, with R(ai) being an h-neighbour of
R(ai+1) for i = 1, ..., `− 1.

Figure 5(b) illustrates this. R(a1) is a 2-neighbour of R(a2) and R(a2) is a
2-neighbour of R(a3). Thus a1 and a3 are h-connected for h = 2.
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Figure 6: a1 is 2-connected to a5

More generally Figure 6 shows a chain of h-connected hyperedges where
h = 2 is the smallest value of |R(ai) ∩R(ai+1)|.

Being h-neighbours is an important property in networks. Generally R(a)∩
R(a′) provides structure for a1 to interact with a2 and the set of all pairwise
intersections can play an important role in the dynamics of systems. To establish

notation let R({a, a′}) def
= R(a) ∩ R(a′). Although pairwise intersections are

clearly important, why stop there? For example, why not consider R({a, a′, a′′})
def
= R(a) ∩R(a′) ∩R(a′′)?

3 The Galois Connection

Figure 7: An animal – characteristic bipartite network

Let R be a relation between A and B, and let A′ be a subset of A, A′ ⊆ A. Let

R(A′)
def
=

⋂
a∈A′ R(a).

This definition allows the intersection of the R(a) to be formed from any subset
of A. For example, Figure 7 shows a relation between a set of animals, A, and
a set of their features, F . Let A′ = { mouse, hare, deer, camel }, where

R(mouse) = { tiny, brown, quadruped, vegetarian },
R(hare) = {small, brown, quadruped, vegetarian },
R(deer) = {large, brown, quadruped, vegetarian, hooves, antlers}, and
R(camel) = {large, brown, quadruped, vegetarian, hooves, hump}.

Then R(A′) =
⋂

a∈A′ R(a) = { brown, quadruped, vegetarian }.
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(a) R({hare, deer}) =
{brown, quadruped, vegetarian}

(b) R(R({hare, deer}) =
{mouse, hare, deer, camel}

Figure 8: {hare, deer} ⊂ R2({hare, deer}) = {mouse, hare, deer, camel}

Of course for many subsets A′ of A the intersection
⋂

a∈A′ R(a) will be empty.
For example, in Figure 8 R({tiger, mouse, chimpanzee}) = {large, quadruped} ∩
{tiny, brown, quadruped, vegetarian} ∩ {small, vegetarian} = ∅.

Although R is a relation between sets A and B, by an abuse of notation the
same symbol is used to define a mapping from the power set of A (set of all
subsets) to the power set of B, R : P(A) → P(B) with R : A′ → R(A′) for all
A′ in P(A). In general R is many-one, e.g. R({tiger, mouse}) = {quadruped} =
R({tiger, hare}).

By another abuse of notation let R also represent a mapping from the power
set of B to the power set of A, R : P(B) → P(A) with R : B′ → R(B′). In
the literature if R is a relation between A and B, the relation “going the other
way” from B to A is sometimes written as R−1, so that aR b if and only if
bR−1 a. However, our abuse of notation makes the development simpler. In

particular, the symbol R2 can be used for the double application of R, P(A)
R→

P(B)
R→ P(A) to give R2 : P(A)→ P(A).

As illustrated in Figure 8 A′ ⊆ R2(A′) for all A′ ⊆ A (assuming that A has
no isolated vertices). A′ ⊆ A is defined to be maximal under R if A′ = R2(A′),
and B′ ⊆ B is maximal under R if B′ = R2(B′). Then

If A′ is a maximal subset of A then R(A′) is a maximal subset of B.
If B′ is a maximal subset of B then R(B′) is a maximal subset of A.

To see this, let R(A′) = B′. If A′ is maximal then A′ = R2(A′) = R(R(A′)) =
R(B′). Then R(A′) = R(R(B′)) so B′ = R2(B′) and B′ is maximal. A similar
argument shows R(B′) is maximal.

The hypergraph HA(B;R)
def
= {R(A′) | for all maximal A′ ⊆ A } will be

called the Galois hypergraph of HA(B;R). The hypergraph HB(A,R)
def
=

{R(B′) | for all maximal B′ ⊆ B } will be called the Galois hypergraph of
HB(A;R).
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Figure 9: Maximal sets are paired in the Galois Hypergraphs of a relation

The mappings R : HA(B;R) → HB(A;R) and R : HA(B;R) → HB(A;R) are
one-to one. Together they form what is called a Galois Connection.

This is illustrated in Figure 9 for the animal-characteristic relation in Figure
8. On the left are the hyperedges R(camel) ∩R(mouse) ∩R(hare) ∩R(deer) =
{brown, quadruped, vegetarian} in HA(B,R). On the right right are the hyper-
edges R(brown) ∩R(quadruped) ∩R(vegetarian) = {camel, mouse, hare, deer}
in HA(B,R). The Galois connection establishes the Galois pair relationship
A′ ↔ B′ where R(A′) = B′ and R(B′) = A′, for example

{brown, quadruped, vegetarian} ↔ {camel, mouse, hare, deer}

The Galois connection is considered by many to be a particularly beautiful
structure. Among many elegant properties it has the following:

For all maximal A′ and A′′ either R(A′) ∩ R(A′′) = ∅ or A′ ∪ A′′ and A′ ∩ A′′

are maximal. For all maximal B′ and B′′ either R(B′)∩R(B′′) = ∅ or B′ ∪B′′
and B′ ∩B′′ are maximal. Furthermore

R(A′ ∪A′′) = R(A′) ∩R(A′′), R(A′ ∩A′′) = R(A′) ∪R(A′′).

R(B′ ∪B′′) = R(B′) ∩R(B′′), R(B′ ∩B′′) = R(B′) ∪R(B′′).
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4 Galois Pairs and Maximal Rectangles

a1 a2 a3 a4 a5 a6 a7

Figure 10: Arches related to the blocks used to construct them

Figure 10 shows a set of arches, A = {a1, a2, a3, a4, a5, a6, a7} with each arch
made from a subset of the blocks B = {b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12}.
Let a be R-related to b if it contains block b. This bipartite relation can be
represented by an incidence matrix as shown in Figure 11. The entry in the ith

row and the jth column of the matrix is one if ai is related to bj , and it zero
otherwise.

In a Galois pair A′ ↔ B′ every a in A′ is R-related to every b in B′. Therefore
the rows and columns of the matrix can be rearranged so that all the ai in A′

are contiguous and all the bj in B′ are contiguous, with the corresponding
rectangle of entries in the matrix all ones. For example, let A′ = {a1, a2, a3}
and B′ = {b3, b4}. Then as shown in Figure 11 the corresponding rectangle is
filled with ones because each of a1, a2 and a3 is related to b3 and b4.

The rectangle corresponding to A′ = {a1, a2, a3} ↔ B′ = {b3, b4} is maximal.
Two other maximal rectangles are shown in Figure 11 corresponding to the
Galois pairs {a3, a4} ↔ {b4, b5} and {a5, a6, a7} ↔ {b7, b8, b9}. The maximal
rectangles A′ ↔ B′ where A′ has just one element or B′ has just one element
are not shown.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

a1 1 0 1 1 0 0 0 0 0 0 0 0

a2 0 1 1 1 0 0 0 0 0 0 0 0

a3 0 0 1 1 1 0 0 0 0 0 0 0

a4 0 0 0 1 1 1 1 0 0 0 0 0

a5 0 0 0 0 0 0 1 1 1 1 0 0

a6 0 0 0 0 0 0 1 1 1 0 1 0

a7 0 0 0 0 0 0 1 1 1 0 0 1

Figure 11: Maximal rectangles in the arch-block structure
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5 The Galois Lattice

∅ ↔ {b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11}
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Figure 12: The Galois Lattice for the arch-block relation of Figure 11

The Galois pairs form a partially ordered set induced by set ordering. Let
A′ ↔ B′ and A′′ ↔ B′′ be Galois pairs. Then A′ ⊂ A′′ if and only if B′ ⊃ B′′.
Thus the Galois pairs can be arranged as a lattice, also called a Hasse diagram
or a construct lattice. The Galois lattice for the arch-block structure is shown
in Figure 12. Figure 13 gives another example. In this case the supremum
of the lattice is the Galois pair {1, 2, 3, 4, 5} ↔ ∅ and the infimum is ∅ ↔
{a, b, c, d, e, f, g, h, i}.

R a b c d e f g h i

1 1 0 1 0 0 1 0 1 0

2 1 0 1 0 0 0 1 0 1

3 1 0 0 1 0 0 1 0 1

4 0 1 1 0 0 1 0 1 0

5 0 1 0 0 1 0 1 0 0

{1, 2, 3, 4, 5} ↔ ∅

�
�
@
@

��������

XXXXXXXX
{1, 2, 4}↔{c} {1, 2, 3}↔{a} {4, 5}↔{b} {2, 3, 5}↔{g}

�
��

��
��

��
��

HH
H

HH

Q
Q

QQ

���
���

���
�

{1, 2}↔{a, c} {1, 4}↔{c, f, h} {2, 3}↔{a, g, i}

�
��

��
��

��
��

HH
HH

H

��
��

��
�

%
%%

```
```

```
```

T
T
T
T
T
T
T

D
D
D
D
D
DD

c
c

c
c

c
c
c

cc

{1}↔{a, c, f, h} {2}↔{a, c, g, i} {3}↔{a, d, g, i} {4}↔{b, c, f, h} {5}↔{b, e, g}

XX
XXX

XXX
XXX

H
HH

H
H

�
��

�
�

���
��

���
���

∅ ↔ {a, b, c, d, e, f, g, h, i}

Figure 13: A relation R and its Galois Lattice
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6 Weak and Strong Connectivity in Hypergraphs

B′

R(a6) R(a5)

R(a1)

R(a4)

R(a2) R(a3)

(a) strong connectivity (b) weakly connected neighbours of a5

Figure 14: Strong and weak connectivity

Galois pairs are sites of connectivity and potential interaction in hyper-
graphs. For the pair A′ ↔ B′ with A′ = {a1, a2, a3, a4, a5, a6} shown in
Figure 14(a) the larger the set B′ the more highly connected are the ele-
ments of A′. Let the hub of a set of hypergraph edges be their intersection,

hub(A1, A2, ..., An)
def
= ∩ni=1Ai.

Let the neighbourhood of a in A be the set NA(a)
def
= {a′ |R(a) ∩ R(a′) 6=

∅}. Figure 14(b) shows an extreme case in which none of the members of the
neighbourhood NA(a5) intersects any of the others, apart from R(a5), so that
hub(NA(a)) = ∅. NA(a5) is said to have weak connectivity.

Figure 15 illustrates a fundamental difference in the way hypergraph hyper-
edges can be configured. In Figure 15(a) the hyperedges intersect each other
pairwise, but their hub is empty. In this case the configuration is not as highly
connected as the configuration in Figure 15(b). When the hub of a neighbour-
hood is non-empty, the neighbourhood will be said to be strongly connected.

(a) N (a1) ∩ N (a2) ∩ N (a3) = {a1, a2, a3}
R(a1) ∩ R(a2) ∩ R(a3) = ∅

(b) N (a1) ∩ N (a2) ∩ N (a3) = {a1, a2, a3}
R(a1) ∩ R(a2) ∩ R(a3) 6= ∅

R(a1) ∩ R(a2) 6= ∅

R(a1) ∩ R(a3) 6= ∅ R(a2) ∩ R(a3) 6= ∅

R(a1) R(a2)

R(a3)�� HH

PP

R(a1)

R(a2)

R(a3)

R(a1) ∩ R(a2) ∩ R(a3) 6= ∅

@
@

Figure 15: Strongly and weakly connected neighbourhoods
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a1 a2 a3 a4 a5 a6 a7

NA(a1) = {a1, a2, a3, a4} NA(a2) = {a1, a2, a3, a4} NA(a3) = {a1, a2, a3, a4}

R(a1)

R(a2)

R(a3)

NA(a4) = {a1, a2, a3, a4, a5, a6, a7}

R(a4)

NA(a5) = {a4, a5, a6, a7} NA(a6) = {a4, a2, a6, a7} NA(a7) = {a4, a2, a6, a7}

R(a5)

R(a6)

R(a7)

Figure 16: Neighbourhoods in the arch-block structure

Figure 16 illustrates these definitions for the arch-block structures. The
neighbourhoods for a1, a2 and a3 are all the same, as are those for a5, a6, a7.
The neighbourhood of a4 contains all the other other arches. As can be seen,
the hyperedge R(a4) bridges the cluster of hyperedges R(a1), R(a2), and R(a3)
with the cluster of hyperedges R(a5), and R(a6) and R(a7. Thus R(a4) connects
the hypergraph.
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