# **Hypernetworks and Multilevel Systems**

Jeffrey Johnson
Open University, UK



http://www.hypernetworks.info/introductiontohypernetworks.html

# **Hypernetworks and Multilevel Systems**

Available on the website

09-6-2014 Lesson 0 Introduction

23-6-2014 Lesson 1 Sets, relations, and the Galois hypergraphs 30-6-2014 Lesson 2 Simplicial Complexes and Q-analysis

07-7-2014 Lesson 3 Hypernetworks

Now

15-7-2014 Lesson 4 Hypernetworks and Multilevel Systems

Next Wednesday

23-7-2014 Lesson 5 Hypernetworks in Global Systems Science

http://www.hypernetworks.info/introductiontohypernetworks.html

# **Hypernetworks and Multilevel Systems**

**Mathematical Modelling of Complex Systems** 

Can mathematics represent everything?

How?



http://www.hypernetworks.info/introductiontohypernetworks.html

# **Hypernetworks and Multilevel Systems**

**Mathematical Modelling of Complex Systems** 

Can mathematics represent everything?

How?

Relationships - e.g. networks, ...

Numbers - e.g. analysis, calculus, statistics, ...

http://www.hypernetworks.info/introductiontohypernetworks.html

# **Hypernetworks and Multilevel Systems**

#### **Mathematical Modelling of Complex Systems**

Can mathematics represent everything?

How?

Relationships - e.g. networks, ...

Numbers - e.g. analysis, calculus, statistics, ...

http://www.hypernetworks.info/introduction to hypernetworks.html









What can networks do when there are relations between more than two things?







































Hypergraphs are beautiful structures, but ..

Hypergraphs are beautiful structures, but .. they are set theoretic & not rich enough



Same set of parts but arranged differently

Hypergraphs and beautiful structure, but .. they are set theoretic & not rich enough

$$\{D, O, G\} = \{G, O, D\}$$
!

Hypergraphs and beautiful structure, but .. they are set theoretic & not rich enough

$$\{D, O, G\} = \{G, O, D\} !$$

Simplices are better:







# Binary relations are not rich enough





3 binary relations ≠ one 3-ary relation

<mother, father> + <mother, daughter> + <father, daughter> = / = < mother, father, daughter>

#### From networks to simplicial complexes

An abstract *p-simplex* is an ordered set of vertices,

$$\sigma_p = \langle v_0, v_1, v_2, \dots, v_p \rangle.$$

e.g. the tetrahedron



 $\sigma_3 = \langle v_0, v_1, v_2, v_3 \rangle$ .

# From networks to simplicial complexes

An abstract  $\emph{p-simplex}$  is an ordered set of vertices,

$$\sigma_{\!\scriptscriptstyle p} = \langle \, v_{\scriptscriptstyle 0}, \, v_{\scriptscriptstyle 1}, \, v_{\scriptscriptstyle 2}, \, \dots \, , \, v_{\scriptscriptstyle p} \rangle.$$

e.g. the tetrahedron

A face is a sub-simplex.

e.g. a triangle

 $\sigma_3 = \langle v_0, v_1, v_3 \rangle.$ 



From networks to simplicial complexes

 $\sigma_{\!p} = \langle \ v_{\scriptscriptstyle 0}, \ v_{\scriptscriptstyle 1}, \ v_{\scriptscriptstyle 2}, \ \dots, \ v_{\scriptscriptstyle p} \rangle.$ 

e.g. the tetrahedron

Example

shopping carts connected by

 $\sigma = \langle p_0, p_1 \rangle$ .



#### From networks to simplicial complexes

An abstract *p-simplex* is an ordered set of vertices,

$$\sigma_p = \langle v_0, v_1, v_2, \dots, v_p \rangle.$$

e.g. the tetrahedron

A face is a sub-simplex.

e.g. a triangle



 $\sigma_3 = \langle v_0, v_1, v_2, v_3 \rangle.$ 

A simplicial complex is a set of

simplices with all their faces

 $\sigma_3 = \langle v_0, v_1, v_2, v_3 \rangle$ .

#### From Networks to Hypernetworks



Gestalt Psychologist Katz:



Vanilla Ice Cream ≠ cold + yellow + soft + sweet + vanilla

it is a Gestalt - experienced as a whole

⟨ cold, yellow, soft, sweet, vanilla ⟩























































































# From Networks to Hypernetworks

#### **Definition**

# A *hypernetwork* is a set of hypersimplices

e.g.

 $\langle \text{cold} + \text{yellow} + \text{soft} + \text{sweet} + \text{vanilla}; R_{Vanilla\_lce\_Cream} \rangle$ 

 $\begin{array}{ll} \text{The sun illusion} & \text{the rectangle illusion} \\ \sigma_1 = \langle \ell_1,...,\ell_{16};R_1 \rangle & \sigma_2 = \langle \ell_1,...,\ell_{16};R_2 \rangle \\ \end{array}$ 

























Observing multilevel systems of systems of systems

#### Hypothesis 1

When we look at systems we see the whole & the parts

#### Hypothesis 2

Our brains create new multilevel structures











# 

Backcloth and traffic

Relational simplices support patterns of numbers across their faces representing dynamical aspects of the systems.

The simplices form a backcloth for the more dynamic traffic

... but there are also backcloth dynamics as relational simplices are formed.

















#### End of Lesson 1

Conclusions

Need a way of representing n-ary relations
Hypergraphs a first step, but not rich enough
Simplicial Complexes are better, but still not rich enough
Hypernetworks complete the relational jigsaw

Hypernetworks can represent multilevel systems Necessary (if not sufficient) for complex systems